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Abstract I argue for the causal character of modeling in data-intensive science,
contrary to widespread claims that big data is only concerned with the search for
correlations. After discussing the concept of data-intensive science and introducing two
examples as illustration, several algorithms are examined. It is shown how they are able
to identify causal relevance on the basis of eliminative induction and a related
difference-making account of causation. I then situate data-intensive modeling within
a broader framework of an epistemology of scientific knowledge. In particular, it is
shown to lack a pronounced hierarchical, nested structure. The significance of the
transition to such Bhorizontal^ modeling is underlined by the concurrent emergence of
novel inductive methodology in statistics such as non-parametric statistics. Data-
intensive modeling is well equipped to deal with various aspects of causal complexity
arising especially in the higher level and applied sciences.
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1 Introduction

For some time, computer scientists have been speaking of data-intensive science as a
Bfourth paradigm^ in scientific research, in addition to—as they say—theory, experi-
ment, and simulation. The classic statement is by Jim Gray, a Turing award winner and
former employee of Microsoft Research. In one of his last talks before he went missing
at sea in 2007, Gray declared: BThe world of science has changed, and there is no
question about this. The new model is for the data to be captured by instruments or
generated by simulations before being processed by software and for the resulting
information or knowledge to be stored in computers. Scientists only get to look at their
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data fairly late in this pipeline. The techniques and technologies for such data-intensive
science are so different that it is worth distinguishing data-intensive science from
computational science as a new, fourth paradigm for scientific exploration.^ (Gray
2007, xix) The talk was transcribed and resulted in a collected volume titled The Fourth
Paradigm (Hey et al. 2009).

Of course, from a philosophical perspective, the terminology is somewhat mislead-
ing as data-intensive science is certainly not a paradigm in the sense coined by Thomas
Kuhn but rather concerns the emergence of novel scientific methodology that presum-
ably does not replace but complements existing approaches. Furthermore, it is at best an
oversimplification to put data-intensive science and computer simulations on the same
methodological level as theory and experiment. But, such conceptual inaccuracies
should not obscure the fact that the abundance of data in various fields of modern
science has significant epistemological implications which merit the attention of
philosophy of science and technology.

The current debate on big data is laden with philosophy-of-science concepts like
explanation, modeling, or causation. However, lack of conceptual clarity and rigor has
led to considerable confusion regarding the real impact and methodological novelty—
for example, when debating controversial statements such as that big data allegedly
involves a shift from causation to correlation (Mayer-Schönberger and Cukier 2013,
Ch. 4) or that it implies Bthe end of theory^ (Anderson 2008). In a recent article, the
editor of this journal highlighted the Bepistemological challenge^ presented by big data
(Floridi 2012). My essay is certainly not intended as a definite solution to this problem,
but rather wants to give a broad outline of some of the relevant developments and thus
serve as a starting point for further discussion. More specifically, I examine the nature
of modeling in data-intensive science arguing for two interrelated theses. First, data-
intensive science essentially aims at identifying causal structure. Second, I situate the
causal modeling in data-intensive science within a general epistemology of scientific
knowledge and argue on this basis that it lacks much of the hierarchical structure
familiar from more conventional scientific modeling.

In Sect. 2, I briefly outline the types of problems addressed in data-intensive science
comparing it with more traditional approaches in statistics. I also propose a definition
for data-intensive science with the following two components: (i) First, it requires data
covering all configurations of a phenomenon that are relevant with respect to a specific
research question; this is related to the popular claim that big data often implies data on
all instances, in short N=all.1 (ii) Second, in the spirit of the quote by Jim Gray, data-
intensive science requires an automation of much of the scientific process. Note that
both features are meant to delineate an idealized scientific method and do not directly
apply to all scientific fields in which the term "big data" is currently evoked.

In Sect. 3, two examples of data-intensive science are sketched. The first, machine
translation, shows in an exemplary manner the shift to horizontal modeling that is at the
focus of Sect. 5. The second, microtargeting, stems from the social sciences and
illustrates the promise that data-intensive science provides a better grip on the causal
structure of complex phenomena leading to more reliable short-term predictions.

1 It is hard to pin down the origin of this phrase, but it is used in several analyses of big data (e.g., Mayer-
Schönberger and Cukier 2013, 197 or Kitchin 2014, 1).
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In Sect. 4, I argue for the causal nature of data-intensive modeling, contrary to
popular claims that data-intensive science supposedly is interested only in correlations.
Employing a difference-making account of causation that is closely linked with
eliminative induction in the tradition of Francis Bacon, John Herschel, and John
Stuart Mill, I show how some widely used big data algorithms can under certain
circumstances identify causal factors. The causal laws determined in data-intensive
science often show various aspects of causal complexity that are familiar from meth-
odological studies in the higher level and applied sciences. For example, such laws
specify a large number of conditions under which a phenomenon will occur or they
exhibit complicated functional dependencies. The principal reason why data-intensive
science turns out quite apt to deal with complexity lies in the mentioned automation of
the entire scientific process. After all, the epistemic conditions and epistemic limits of
modern information technology are substantially different from those of science as
carried out by humans, e.g., in terms of storage capacity and computational abilities.

In Sect. 5, the modeling in data-intensive science is situated within a general
framework of an epistemology of scientific knowledge. It is shown to lack a number
of features that are typical for more conventional scientific modeling which usually
aims at an efficient reduction of data and an adequate structuring of knowledge. Data-
intensive models (i) have no pronounced hierarchical structure, which implies that (ii)
they lack substantial explanatory power. (iii) They rely on few modeling assumptions,
and (iv) they are quite complex because little of the original data is actually discarded.
Data-intensive modeling will be identified as horizontal modeling in contrast to the
hierarchical modeling characteristic for more traditional scientific methodology.2

Further evidence for a qualitative change in the nature of modeling is provided by
concurrent methodological shifts in statistics. For example, predictions in data-
intensive science are often calculated on the basis of the original data and a suitable
algorithm without formulating parametric models, which attempt to summarize the data
in terms of a relatively simple equation involving a few parameters, e.g., a linear
function or a Gaussian distribution.

Section 6 concludes by summarizing how data-intensive modeling provides new
ways to deal with causal complexity.

2 The Nature of Data-Intensive Science

2.1 Defining Data-Intensive Science

The concept of data-intensive science should be distinguished from the notion of big
data itself, i.e., from the mere fact that science—and other areas of human endeavor—is
today dealing with increasingly massive amounts of data. Big data is usually defined
with respect to the pure amount of information or to the technical challenges which it

2 As Peter Norvig, research director at Google, writes: BIn complex, messy domains, particularly game-
theoretic domains involving unpredictable agents such as human beings, there are no general theories that can
be expressed in simple equations like F=m a or E=m c2. But if you have a dense distribution of data points, it
may be appropriate to employ non-parametric density approximation models such as nearest-neighbors or
kernel methods rather than parametric models such as low-dimensional linear regression.^ (2009) Many ideas
elaborated in this essay take inspiration from scattered writings of Norvig.
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poses in terms of the so-called Bthree Vs^: Essentially, data is supposed to be big if it is
huge in Volume, high in Velocity, and diverse in Variety (Laney 2001; for an extended
definition on this basis, see Kitchin 2014, 1–2). However, definitions based on the three
V’s are beset with a number of problems. Most importantly, volume, velocity, and
variety are all relational concepts, as Luciano Floridi has pointed out (2012, 435). Thus,
the big data of today could easily be the small data of tomorrow depending, for
example, on progress in technological hardware. Just emphasizing the sheer amount
of data thus fails to establish any interesting developments with respect to scientific
methodology.

Let us therefore shift the focus from big data to data-intensive science, i.e., to the
techniques with which large amounts of data are being processed. One should further
distinguish methods of data acquisition, data storage, and data analysis. Although the
first two are clearly important for data-intensive practices, in this essay, I will concen-
trate on the third. With this in mind, let me propose two fundamental characteristics for
data-intensive science that will later serve to establish novel methodological aspects in
the analysis of large data sets:

(i) Data-intensive science requires data representing all (or at least a substantial part)
of those configurations of the examined phenomenon that are relevant with respect
to a specific research question. This first characteristic ensures that the causal
structure of a phenomenon can be determined according to eliminative induction.

For complex phenomena, characteristic (i) implies (a) high-dimensional data,
i.e., data sets involving many variables or parameters,3 as well as (b) a large number
of observations covering a wide range of different configurations. The different
variables are more or less directly measureable or should at least be accessible to
operationalization. They are all potentially causally relevant to the phenomenon or
are at least symptoms or proxies of other variables that might be causally relevant.
A configuration consists in a specific combination of values for the different
variables, and relevant are all those configurations that are required to carry out
eliminative induction in a specific research context and to the desired level of
precision (cp. Sect. 4).

According to characteristic (i), the notion of data-intensive science is relative to
the complexity of the examined phenomenon. Sometimes, when considering a
simple phenomenon like a system consisting of a light switch and a lamp, Bdata-
intensive^ science may require only a few data points, e.g., in this case, two
observations: (switch=on, lamp=on), (switch=off, lamp=off). To avoid this un-
wanted consequence, one could restrict the practice of data-intensive science to the
study of causally complex phenomena.

Note that big data can also be defined from this perspective: as data about
complex phenomena that satisfies characteristic (i). This would render the notion
independent of advances in information technology and would thus solve Floridi’s
problem of relativity. On the other hand, many huge data sets would not constitute
big data anymore, no matter how large they are, if they do not allow for causal
modeling based on eliminative induction.

3 The notion of parameter is to be understood here in a non-technical manner, and it is used interchangeably
with the term variable.
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In a way, characteristic (i) is supposed to render more precise the idea that with
big data novel approaches to statistical sampling emerge. Several authors have
claimed that in data-intensive science, the whole population is examined instead of
just representative samples, in short N=all (e.g., Mayer-Schönberger and Cukier
2013, 197 or Kitchin 2014, 1). By contrast, characteristic (i) only requires evidence
in terms of those instances that constitute different configurations, i.e., different
combinations of values for the variables. For example, with respect to the
microtargeting discussed in Sect. 3b, it is not necessary to have data on all voters,
but rather data suffices on a smaller number of individuals that are representative of
the possible variations that can occur in the population. This illustrates quite well an
interesting shift with respect to sampling, from representativeness in terms of
relative frequencies to representativeness in terms of possible variations of param-
eters.4

(ii) The second characteristic concerns the automation of the entire scientific process,
from data capture to data processing to modeling. This not only allows
sidestepping some of the limitations of the human cognitive apparatus but also
leads to a loss in human understanding regarding the actual results of data-
intensive science, as we will see in Sect. 5d. Certainly, automation is only part
of the picture, and technology takes over a large diversity of roles, e.g., by
speeding up processes, by linking previously unrelated domains of experience,
or by providing visualization tools. However, following Gray, automation of the
entire scientific process is deemed crucial in that it brings to bear the epistemic
conditions of the information technology such that science can overcome some
limits of conventional modeling, especially when dealing with complex phenom-
ena. If humans needed to interfere at a certain step, this would create a bottleneck
requiring again an overall reduction of the data and a strong simplification of the
models.

Note once more that these two features are meant to delineate an idealized scientific
practice. Only rarely will there be data on all relevant configurations. Consequently, the
resulting causal knowledge will only be approximate, compromising predictive reliabil-
ity. Furthermore, many applications involving large data sets, for example, in high-
energy physics or in genetics, do not directly fit the notion of data-intensive science as
proposed here—mainly since in these domains theoretical considerations and data are
deeply intertwined. However, the discussion of idealized methodologies is familiar from
philosophy of science. For example, purely inductive or purely hypothetico-deductive
approaches do not exist in actual scientific practice nor do purely exploratory or purely
theory-driven experiments, but working out the details of these methodologies has
proven extremely helpful for understanding more complex scientific endeavors.

There is considerable similarity between the two characteristics proposed in this
section and the notion of data-intensive science developed by Sabina Leonelli, whose
work on data-intensive science is the most elaborate to date in the philosophical
literature focusing mainly on the role of big data in biology and more exactly on

4 Note that frequency data, i.e., data how often certain configurations occur, will still be required if not all
causally relevant variables are known. However, a detailed discussion of this issue would lead too far.
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biomedical data bases as research tools, e.g., for classification (e.g., 2012b, 2013).
Leonelli is quite hesitant with respect to a universal characterization of data-intensive
science given Bthe wide range of activities and epistemic goals currently subsumed
under this heading^ (2012a, 1). Nevertheless, she identifies two central features: One
concerns Bautomated reasoning,^ the other Binduction from existing data […] as a
crucial form of scientific inference^ (ibd.). Leonelli criticizes the first on the grounds
that machine science cannot replace human judgment and expertise. With respect to the
second feature, she points to difficulties concerning the concept of induction invoking
the notorious epistemological debates on this issue. As a consequence, Leonelli stresses
the methodological and epistemic complexity of data-intensive science—a perspective
that well correlates with her focus on big data in biology, which indeed does not
constitute a pertinent example for the idealized practice that I sketch in the present
article.

Still, some of Leonelli’s worries can be addressed. By examining specific algo-
rithms, this article identifies the type of induction used in data-intensive science as
eliminative induction. Furthermore, Pietsch (2015) distinguishes various aspects of
theory-ladenness examining whether they occur or are absent in data-intensive science.
This provides some indication where human expert knowledge is required and to what
extent automation is feasible.5

2.2 The Problem Structure in Data-Intensive Science

Typical problems in data-intensive science concern classification or regression of an
output variable y with respect to a large number of input variables x, also called
predictor variables or covariates. Generally, one wants to determine the nature of
dependence of the output variable from the input variables on the basis of given data
points linking certain values of the input variables with a value of the output variable.
The main differences compared with conventional problems in statistics consist in
the high dimensionality of the input variable (sometimes also the output variable)
and in the amount of data available about various configurations or states of the
system. For example, an internet store wants to know how likely someone buys a
certain product depending on surf history, various cookies, and a user profile as
well as based on data of other users who have either bought or failed to buy the
product. A medical researcher examines which combinations of genetic and
environmental factors are responsible for a certain disease. Or, a political adviser
is interested how likely a specific individual is going to vote for a certain
candidate based on a profile combining, for example, voting history, political
opinions, general demographics, and consumer data.

In a classification problem, the output variable can assume a number of discrete
values. In a regression problem, the output variable is continuous. In order to establish
an adequate and reliable model, extensive training and test data is needed. Usually, one
starts with a data set comprising a number of instances that each gives a value for the
output variable dependent on at least some values for the input variables (so-called

5 Pietsch argues that data-intensive science involves external theory-ladenness concerning the framing of a
research question but mostly lacks internal theory-ladenness concerning the causal structure of the examined
phenomenon.
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supervised learning). The data set is then divided into a training set and a test set. The
training data is used to build the model, the test data to validate and verify the model.6

In this essay, we cannot delve into the technical details of the various algorithms
employed in data-intensive science, such as support vector machines, forests, or neural
networks. I will now however introduce two simple algorithms: classification trees and
naïve Bayes. Later on in Sect. 6, non-parametric modeling will be discussed as a further
class of methods requiring large amounts of data.

Classification trees (Russell and Norvig 2009, Ch. 18.3.3) are used to determine
whether a certain instance belongs to a particular group A depending on a large number
of parameters C1, …, CN, which can each take on a finite number of discrete values.7

For example, A could classify an email as spam (A=1) or not (A=0), and the Ci could
denote the number of times that certain keywords occur in the email. The tree is set up
recursively with the help of training data, e.g., in the example data linking keywords to
emails which are known to be spam or not. First, the parameter CX is determined that
contains the largest amount of information with respect to the classification of the
training data, as formally measured in terms of Shannon entropy. In the mentioned
example, this would be the single keyword that best classifies the emails in the training
data, e.g., Bsex^ or Blottery.^ If CX classifies all instances in the training set correctly,
the procedure is terminated. Otherwise, several subproblems remain, namely to classify
depending on the number of times that CX appears. The procedure is repeated until
either all instances are classified correctly or no potential classifiers are left. If the
algorithm is successful and the problem is set up correctly, the resulting tree structure
gives an expression of necessary and sufficient conditions for A, which can be
interpreted as complex causal laws. In Sect. 4b, we will come back to the problem,
under which circumstances such Blaws^ really are predictive.

Another simple big-data algorithm is naïve Bayes classification, which, for example,
is also widely used in the identification of spam emails. The problem structure is the
same as in the case of classification trees. A number of parameters C1, …, CN,
representing again certain words or sequences of words appearing in emails, is used
to determine the probability that a specific instance is A or not, e.g., that an email is
spam or not. Using Bayes’ theorem:

P AjC1; …; CNð Þ ¼ P Að Þ = P C1; …; CNð Þ½ � Π i¼1;…;NP CijAð Þ
The Bnaïve^ part of the algorithm is that the parameters Ci are assumed to be

independent given A, i.e., P(C1, …, CN|A)=Πi=1,…,N P(Ci|A), which of course may
not be the case. As with classification trees, a training set is used to develop the model.
It provides representative frequencies for joint occurrences of A and the different Ci and
thereby the probabilities P(Ci|A), P(A), and P(C1,…, CN). On this basis, new instances
can be classified given certain values Ci. Usually, the value of A is chosen that has the
highest probability. Again, test instances can be set aside to validate the model.

6 An excellent introductory textbook from a computer science point of view is Russell and Norvig (2009).
7 In a pioneering book on machine learning and scientific method, Donald Gillies also used the example of
classification trees to argue for the Baconian nature of these novel developments (1996). While Gillies does
not discuss causation, the general thrust of his book points in a similar direction as the argument given in
Sect. 4.
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3 Examples of Data-Intensive Modeling

3.1 Machine Translation

Machine translation belongs to the standard repertoire of big-data success stories. It
illustrates particularly well the shift from complex models with relatively scarce data to
simple models with a lot of data that will be discussed in Sect. 5. Although somewhat
of an oversimplification, two different approaches can be distinguished (Halevy et al.
2009). The rule-based approach models the complex hierarchy of grammatical rules of
both languages and translates sentences by using a conventional dictionary. The data-
driven or statistical approach largely neglects the grammatical structure and works
instead with huge corpora of texts in combination with Bayesian inferential statistics.
Usually, there will be monolingual corpora, e.g., in English and a foreign language, and
bilingual corpora containing sample translations, all of them representative of current
speech practice. The frequencies of words in these corpora and of sequences of words,
so-called n-grams, can be used to calculate the most probable translation of a foreign
word sequence f into English e using Bayes’ rule8: argmaxe P(e) P(f|e), where the
probabilities are evaluated in terms of relative frequencies in the corpora.

The data-driven approach has been strikingly successful. Apparently, probability
distributions of words and word sequences yield reasonable results for many tasks such
as spellchecking or translation, while grammatical knowledge is largely dispensable.
Two quotes from practitioners well illustrate this remarkable situation. Peter Norvig,
who for a long time headed Google’s machine translation group, once stated that they
have been able Bto build models for languages that nobody on the team speaks.^9

Frederick Jelinek, a pioneering and by now legendary figure in the field, is often quoted
with saying that Bevery time I fire a linguist, the performance of the speech recognizer
goes up.^10

Data-driven machine translation fits well the notion of data-intensive science devel-
oped in Sect. 2a. With respect to the first criterion, practitioners have often emphasized
that the data-driven approach requires enormous corpora (e.g., Halevy et al. 2009, 9).
Already in 2006, Google Translate relied on a trillion-word corpus assembled from the
internet with frequency counts of all sequences up to five words (ibd.). Plausibly, such a
corpus approximately represents for some areas of speech a considerable fraction of all
possible phrases, i.e., of all relevant configurations. Data-driven machine translation is
also a good example for the second criterion of Sect. 2a regarding the automation of the
research process. After all, the corpora are collected online, stored in data bases, and
algorithmically analyzed without much human intervention and in particular without
notable input in terms of theoretical knowledge from linguistics.

While machine translation constitutes a pertinent example for the shift from hierar-
chical to horizontal modeling as described in Sect. 5, it is less obvious that it fits the
notion of causal modeling, since it obviously does not refer to the physical necessity of
empirical causal laws. However, the logic of necessary and sufficient conditions

8 Jelinek 2009, 492. Cp. also “The Unreasonable Effectiveness of Data”, talk given by Peter Norvig at UBC,
23.9.2010. http://www.youtube.com/watch?v=yvDCzhbjYWs at 38:00.
9 Ibd. 43:45.
10 http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/speechreco/team/, accessed 1.8.2013
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inherent in eliminative induction as depicted in Sect. 4 works also for the Bconventional
necessity^ of translation rules. The context of a word, i.e., all other words at various
distances, eventually determines a condition for a suitable translation, resulting in an
almost infinite number of complex and highly context-specific translation rules. Note
that simple and general rules may entirely fail to exist, i.e., more precisely, that general
rules have so many and so diverse exceptions that these cannot be fully listed. Under
such circumstances, the data-driven horizontal modeling could be the only option
available.

Machine translation is a good example to illustrate the shifts in theory-ladenness and
the role of expert knowledge occurring in the wake of data-intensive science. As the
mentioned quotes by practitioners like Frederick Jelinek or Peter Norvig prove, for
certain tasks in linguistics, specific kinds of theory and thus of expert knowledge can be
dispensed with. An interesting question for the sociology of science concerns the
impact of these shifts on scientific practice in a wide array of fields, from medicine
to political science.

3.2 Microtargeting

The second example comes from the social sciences regarding the use of data-intensive
methods in American elections, in particular Barack Obama’s 2008 and 2012 bids for
presidential office (Issenberg 2012). Political campaigning is a typical big data problem
as outlined in Sect. 2b. Voters are characterized in terms of hundreds or thousands of
features ranging from demographic data like age, race, or gender to political opinions
gathered in surveys to consumer data provided, for example, by credit card companies.
Campaign managers are then interested in causal relationships between these predictors
and outcome variables like commitment to vote or allegiance to a certain candidate.11

The approach has been aptly called microtargeting.
In the USA, abundant training data exists because citizens are often willing to

volunteer information about their voting habits. The resulting models are developed
algorithmically with little input of political expert knowledge. They are used to
determine the probabilities that certain persons can be convinced to vote for a specific
candidate and which means are most appropriate in terms of political message and
medium, e.g., contact by mail, telephone, or a personal visit. While previously, political
campaigns addressed larger groups of people characterized by just a few parameters
such as middle-class Caucasian male, microtargeting focuses on individual voters
characterized by hundreds or thousands of variables. This allows correcting many
implicit assumptions about the alleged relevance of variables like race, gender, or class,
essentially redrawing the conceptual boundaries between groups on an empirical basis.
Indeed, data-intensive science is especially suited for the categorization and classifica-
tion of phenomena in view of a specific purpose.

Certainly, current data-intensive approaches are far from identifying necessary and
sufficient factors such that the voting behavior of specific individuals can be reliably
predicted and manipulated. But, big data algorithms seem capable of increasing the
probability for predictions by taking into account a larger number of plausible

11 Of course, these variables often do not constitute direct causes, but rather symptoms or proxies of direct
causes, as discussed in Sect. 4b.
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predictors than conventional approaches.12 Such predictive success can only be due to a
better grip on the causal relationships of a phenomenon, since after all, reliable
predictions require that the algorithms are capable of better approximating necessary
and sufficient conditions for a phenomenon. Many applications of big data in the social
sciences have a structure that is analogous to the microtargeting in election campaigns.
Individuals are characterized in terms of a large number of parameters with a specific
aim in mind, e.g., to find an appropriate search result or to make someone click a
certain link or buy a certain product. Data-intensive approaches in the social sciences
are particularly suited for short-term predictions and manipulations.

Microtargeting well illustrates two developments that are characteristic for the
emergence of data-intensive approaches in the social sciences. The first concerns
personalization, i.e., the idea that one is not anymore interested in representative
samples, but rather tries to model each individual of a population. In fact, the data-
intensive modeling used by the Obama campaigns tried to account for every single
voter—which broadly corresponds to the idea of N=all evoked in Sect. 2a. Examples
for this development in other areas of scientific research are the promise of personalized
medicine that many health professionals see in big data, personalized web search, or
individualized online advertising.

The other development concerns the shift in the role of expert knowledge that was
already mentioned, which directly correlates with the automation of science as de-
scribed in Sect. 2a. The conflict between two expert cultures in recent election
campaigns is well described in the chapter on BGeeks vs. Gurus^ of Sasha
Issenberg’s BVictory Lab: The Secret Science of Winning Campaigns^ (2012). The
geeks rely on data and statistics with a profound distrust in anything they could not
measure, while the gurus are Bthe celebrated political wise men^ with their little pet
theories about which things happened when. It seems that data-intensive science has
considerably shifted the balance from gurus to geeks in recent years.

4 The Causal Nature of Data-Intensive Modeling

In a much-cited and influential article, journalist Chris Anderson, at the time editor in
chief of the technology and lifestyle magazineWired, wrote some controversial remarks
how big data affects science: BCorrelation supersedes causation, and science can
advance even without coherent models, unified theories, or really any mechanistic
explanation at all.^ (2008) The ideas condensed in this brief statement have been
readily picked up not only by mainstream media but also in academia. Occasional
critical reactions have mostly focused on Anderson’s thesis concerning Bthe end of
theory.^ 13 By contrast, I will now explain why the widespread claims about the

12 This has been widely reported in the press, e.g., http://www.businessweek.com/articles/2013-05-31/
obamas-data-team-totally-schooled-gallup (accessed 5.8.2014)
13 It is quite revealing that Anderson misquotes Google research director Peter Norvig with the statement: BAll
models are wrong, and increasingly you can succeed without them.^ (2008) In a reply on his web page,
Norvig clarifies: BThat’s a silly statement, I didn’t say it, and I disagree with it.^ (2009) Certainly, there will
always be modeling assumptions in any scientific endeavor. Norvig’s actual point had concerned changes in
the nature of modeling resulting from big data (cp. Sect. 5).
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significance of correlation as opposed to causation are mistaken. Instead, the modeling
in data-intensive science is very much of causal nature.

Nancy Cartwright once highlighted as central feature of causation that causal knowl-
edge can ground effective strategies (1983, Ch. 1). A mere correlation cannot tell how to
successfully intervene in the world, e.g., the amount of rain cannot be reduced by banning
the use of umbrellas, even though there exists a robust correlation between rain and the
use of umbrellas. By contrast, headaches can be cured by taking acetylsalicylic acid
because, according to current medical knowledge, there is a causal mechanism connecting
the two phenomena. Thus, if big data is about making predictions regarding interventions,
e.g., about making people vote for a specific candidate or click on a certain ad, then it must
aim for causal knowledge and cannot be satisfied only with correlations.

Note that correlations which allow for reliable predictions, but do not enable
effective interventions, nevertheless require a causal justification. Consider as an
example the correlation between barometer reading and weather, which obviously
can be used for prediction, but not for manipulation. Tinkering with the barometer
needle will never let the sun come out. Of course, the underlying causal structure
consists in a common cause in terms of the air pressure that determines both weather
and barometer reading. It seems plausible to assume that it should always be like that. If
we can reliably predict certain phenomena on the basis of some other phenomenon, i.e.,
if the success rate is higher than expected due to chance, then either one phenomenon is
a difference-maker for the other or there must be some common cause that is a
difference-maker for both phenomena. All this holds of course independent of the fact
whether we are aware of the causal connection or not.

Notwithstanding this simple argument, the phrase Bcorrelation supersedes causation^
is ubiquitous in the debate on big data. 14 The confusion essentially results from a
conflation of causation with mechanistic explanation. The viewpoint defended in the
present article is the following: The notion of causation grounds the important distinction
between correlations that allow for successful predictions or manipulations and those that
do not. Now, a widespread but ultimately mistaken belief holds that causation cannot be
read off the data itself, but needs a deeper justification in terms of a mechanistic
explanation, how the causes bring about the effects in terms of more fundamental laws.
However, recent technical work on causality (e.g., Pearl 2000; Spirtes et al. 2000) as well
as conceptual analysis (e.g., Woodward 2003) has shown that causal knowledge can be
derived without a deeper understanding of any underlying mechanism. In the following, I
will argue for the same point on the basis of a difference-making account of causation and
will show how this account plays a role in some of the classic big-data algorithms.

4.1 Difference-Making: an Appropriate Account of Causality for Data-Intensive
Science

The framing of big-data problems as a mapping of input variables to an outcome
variable fits well with eliminative induction 15—a scientific method whose history

14 Compare, for example, the recent compilation on http://www.forbes.com/sites/gilpress/2013/04/19/big-
data-news-roundup-correlation-vs-causation/ accessed 15.6.2013
15 Not to be confused with a looser use of the same term in the sense of eliminating hypotheses until only the
correct one remains
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reaches back at least to the methodological writings of medieval thinkers like
Robert Grosseteste and William of Ockham. The most elaborate frameworks are
Francis Bacon’s method of exclusion (1620/1994, Bk. 2), which arguably was
considered the methodological foundation for modern science until the end of the
nineteenth century, William Herschel’s methodology as laid out in his Preliminary
Discourse (1851), and John Stuart Mill’s methods of elimination (1886, Bk. III,
Ch. VIII). Writers in the tradition of eliminative induction have repeatedly stressed
the inadequacy of the primitive notion of regularity for causal and inductive
reasoning (e.g., Bacon 1620/1994, 21; Mill 1886, 204). In the modern debate,
Federica Russo, in particular, has emphasized the importance of variation for
causal reasoning as opposed to essentially Humean regularity conceptions (2009;
Illari and Russo 2014, Ch. 15–16). In the twentieth century, eliminative induction
has received little attention presumably due to prevailing anti-inductivist and anti-
causalist commitments.16 In the following, I can only highlight a few features that
are crucial for the discussion of data-intensive science. For a more comprehensive
overview of the method, compare, for example, Pietsch (2014).

In eliminative induction, a phenomenon A is examined under the systematic varia-
tion of potentially relevant conditions C1, …, CN with the aim of establishing causal
relevance or irrelevance of these conditions, relative to a certain context or background
B determined by further conditions. Obviously, the framing corresponds exactly to that
of big-data problems as outlined in Sect. 2b.

The best known and arguably most effective method of eliminative induction is the
so-called method of difference that establishes causal relevance of a condition CX by
comparing two instances which differ only in CX and agree in all other circumstances
C1,…, CN. If in one instance, both CX and A are present and in the other both CX and A
are absent, then CX is causally relevant to A.17 There is a twin method to the method of
difference, that one might call the strict method of agreement, which establishes causal
irrelevance, if the change in CX has no influence on A. Eliminative induction can deal
with functional dependencies, and an extension of the approach to statistical relation-
ships is straightforward.

A method for establishing causal irrelevance is usually not included in accounts of
eliminative induction, such as that of Mill or of Mackie. Some authors contemplate but
reject inferences to causal irrelevance. For example, Baumgartner and Graßhoff argue
that inferring the irrelevance of a condition in some context overlooks the possibility
that it may be causally relevant with respect to other conditions that are currently not
instantiated (2004, p. 212). For example, a burning match can be causally relevant to a
barn fire, even though in a concrete instance, it makes no difference due to the absence
of inflammable material. An account that includes the notion of causal irrelevance and
circumvents the described problem by rendering the notion of causal relevance and
irrelevance background-dependent is given in Pietsch (2014).

A further conceptual difficulty of the strict method of agreement is that in scientific
practice, causal irrelevance can be determined only up to a certain degree of measure-
ment accuracy. A change in CX may have minute consequences for A that are not

16 There are notable exceptions, e.g., Mackie (1980) or Baumgartner and Graßhoff (2004).
17 A number of further problems arise here, e.g., concerning time direction. Details under which additional
premises these inferences are actually valid can be found in Pietsch (2014).
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detectable in a specific situation. While considerable problems can arise, for example,
when several small contributions add up to measureable changes, the dependence on
measurement accuracy constitutes no reason to reject inferences to causal irrelevance.
They are ubiquitous in scientific practice and causal irrelevance can play an important
conceptual role in various contexts, for example, regarding the evaluation of counter-
factuals, as described below.

The methodology of eliminative induction suggests a corresponding account of
causation which will be called difference-making account. While I essentially agree
that one should be careful to separate definition and methodology of causation, the
dividing line is nevertheless blurry. Conceptual questions about how to define causation
cannot be addressed without at the same time considering epistemological issues how
causal relationships can be identified in the world and vice versa. In a way then,
eliminative induction and the difference-making account should be considered as two
sides of the same coin.

The difference-making account is closely related to the counterfactual approach. In
fact, it adopts a counterfactual definition of causation, along the lines of Hume’s famous
statement: Bwe may define a cause to be an object followed by another, and […] where,
if the first object had not been, the second never had existed^ (Hume 1777, Sec. 7,
§60). In the difference-making account, the notions of causal relevance and causal
irrelevance are fundamental, thus: in a context B, in which a condition C and a
phenomenon A occur, C is causally relevant (irrelevant) to A, iff the following
counterfactual holds: if C had not occurred, A would also not have occurred (if C
had not occurred, A would still have occurred). Note that there is an issue regarding the
direction of causation, which for lack of space we cannot address here. That every causal
statement is relative to an instance, in which the conditions and the phenomenon actually
occur, is meant to reflect the contextuality of causal statements as well as the primacy of
singular causal statements over causal regularities. The latter only follow from a specific
causal relation if the context and the relevant conditions can be replicated.

According to the perspective of the difference-making account, causal (ir-)relevance
is a three-place relation: a condition C is (ir-)relevant to a phenomenon Awith respect to
a certain background B of further conditions that are held constant if potentially
causally relevant to A and that are allowed to vary if causally irrelevant. More exactly,
a causal context is determined by a background B of potentially causally relevant
conditions that are held constant, while a number of other potentially relevant condi-
tions C1, …, CN are allowed to vary. Certainly, conditions that are relevant to A in
virtue of being relevant to one of the Cs, i.e., that lie on causal chains leading through
the Cs to A, may vary as well. A good example for such a causal background or context
is an experimental setup under laboratory conditions. The restriction to a context B is
required because there is no guarantee that in a different context B*, the causal relation
between C and Awill continue to hold. Since the relevant conditions in the background
can only rarely be made explicit, if at all, causal laws as established by the difference-
making account have a distinct ceteris-paribus character.

A crucial difference with respect to conventional counterfactual accounts of causa-
tion like that of David Lewis concerns the way the counterfactual conditional is
evaluated. Lewis, for example, refers to the similarity between the actual and possible
worlds, essentially: ‘If C were the case, A would be the case’ is true, if some C-world
where A holds is closer to the actual world than is any C-world where A does not hold.
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(Lewis 1973, 560) Here, a C-world is just a possible world in which C holds. For
Lewis, the challenge is to find a proper construal of the notion of possible worlds and of
the similarity between them.

By contrast, the difference-making approach evaluates causal counterfactuals in
terms of causal irrelevance: ‘If C were not the case, A would not be the case’ is true
with respect to an instance in which both C and A occur in a context B, if there exists at
least one instance in which neither C nor A occurs in the same context B and if the
context guarantees homogeneity.18 The context guarantees homogeneity, if only con-
ditions that are causally irrelevant to A can change with the following exceptions: (i) C
itself, (ii) conditions that are causally relevant to A in virtue of being causally relevant
to C, and (iii) conditions that are causally relevant to A in virtue of C being causally
relevant to them. Intuitively speaking, the last two items denote conditions that lie on a
causal chain leading through C to A.

The causal counterfactual that occurs in the definition of causal irrelevance is
evaluated in a completely analogous manner. Note that this approach covers only a
small amount of all conceivable counterfactual statements—a restriction that is
intended to be conveyed by using the term Bcausal counterfactuals.^ For example,
propositions like Bif Hilary Clinton had been a man, she would have become president^
cannot be evaluated in the above manner since an instance that differs only in terms of
irrelevant circumstances cannot plausibly be found in the actual world nor be idealized
from other phenomena in the actual world. Furthermore, there is a threat of circularity,
since the concepts of a constant context and of homogeneity themselves require the
notions of causal irrelevance and of causal relevance. However, this circularity is not
vicious, but essentially corresponds to a consistency requirement for all propositions
stating causal relevance and irrelevance.

This construal of the truth conditions for counterfactuals is of course directly
inspired by the method of difference and the strict method of agreement. One might
be tempted to consider it a variant of Lewis’s approach that implements a specific
measure of similarity. However, this is clearly not the case for the following reasons. (i)
First of all, the difference-making approach does not compare different possible worlds,
but different phenomena or events in the actual world. (ii) Furthermore, the Bsimilarity
measure^ of the difference-making approach is not continuous, but a two-valued
function: either the instances differ only in terms of irrelevant circumstances or not.
(iii) Moreover, there is no universal similarity measure at all. Rather, similarity always
depends on C and A, because these appear in the definitions of a constant context and of
homogeneity. For all these reasons, the difference-making approach to counterfactuals
cannot be considered a special case of Lewis’s account.

In the end, it comes down to a matter of taste, if one prefers to classify the
difference-making account as a variant of the counterfactual approach or if one
considers the differences crucial enough to merit a proper name. I tend toward the
latter. To sum up, there are basically three main differences: the construal of counter-
factuals, the inclusion of a notion of causal irrelevance, and the introduction of

18 One should also define the truth value for counterfactuals if there are no such situations, in whichC does not
occur. For example, it may be the case that C belongs to a complex of conditions that occur only together. In
such a case, nothing can be said about the causal relevance of C alone, only about the relevance in conjunction.
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background dependence. The term Bdifference-making^ aptly reflects the fact that
counterfactuals are evaluated not with respect to possible worlds but with respect to
actual situations that either really occur or are idealized from the actual world.

These are the basic building blocks of the difference-making account. All other
notions can be construed from the elementary definitions of causal relevance and
irrelevance, they all have what one might call a specific causal signature. Consider as
an example the notion of a causal factor C for a phenomenon A with respect to a
background B. The basic idea is that C is not sufficient for Awith respect to background
B but requires the presence of additional conditions X. For example, a short circuit is
not enough to start a barn fire but requires also some inflammable material. In terms of
causal relevance and causal irrelevance, a causal factor can be identified in the
following way: There exists an X such that C is causally relevant to A with respect to
B∧X and irrelevant to ¬Awith respect to B∧¬X; X is relevant with respect to B∧C and
causally irrelevant to ¬Awith respect to B∧¬C.19

Similarly, the notion of an alternative cause C for Awith respect to a background B,
i.e., both C and some X are by themselves sufficient for the phenomenon A, can be
explicated as follows: There exists an X such that C is causally relevant to A with
respect to a background B∧¬X, but causally irrelevant to Awith respect to a background
B∧X; equally, X is causally relevant to A with respect to a background B∧¬C and
causally irrelevant to Awith respect to a background B∧C. As an example, C could be a
short circuit and X lightning as possible causes for a fire A.

Based on causal factors and alternative causes, the difference-making account can
identify causal laws in terms of necessary and sufficient conditions for a phenomenon,
relative to a certain background or context. More specifically, a cause established by
this method can be formulated as an INUS condition (Mackie 1965), i.e., an
Insufficient, but Non-redundant part of an Unnecessary but Sufficient condition, with
the further requirement that these INUS conditions must in general be seen relative to a
context. Extensive information about potentially relevant conditions in as many differ-
ent configurations as possible is necessary to approximate reliable causal knowledge of
complex phenomena by means of eliminative induction and the difference-making
account. Exactly this kind of information is provided by big data.

We have already compared the difference-making approach with the counterfactual
account. Let me now give a brief overview how it relates to other popular approaches to
causation. With respect to naïve regularity theories, an important distinction is that the
difference-making account does not explicate causation in terms of constant conjunc-
tion, but rather in terms of the variation of circumstances, for example, by taking into
account negative instances. Strictly speaking, the mere repetition of an event under the
exact same circumstances does not furnish any evidence at all about causal relation-
ships according to the difference-making account.

A further crucial difference concerns the conditions that need to be fulfilled for
reliable inferences. As emphasized in Pietsch (2014, Sec. 3f), there is a distinct problem
of induction for the difference-making approach in comparison with naïve regularity
theories. While the latter rely on an essentially indefensible principle of the uniformity
of nature, the difference-making account presupposes a set of premises that seem much

19 Note that there are some technical difficulties in defining irrelevance to ¬A, but intuitively, the meaning
should be clear.
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more reasonable and realistic, including (i) determinism, (ii) constancy of background
conditions, and (iii) adequate causal language. These are certainly challenging to
establish, but they can be approximated by relying on evidence in terms of varying
conditions.20

Note that the difference-making account bears considerable resemblance to more
sophisticated regularity theories like those of Mill (1886) or of Mackie (1980). With
both, it shares the focus on eliminative induction and just like Mackie’s account, it
emphasizes the importance of background dependence and of counterfactual reasoning.

The difference-making account is also related to the interventionist approach, in
particular, there exist considerable similarities between the way it evaluates counter-
factuals and how the notion of intervention is construed, for example, in Jim
Woodward’s approach (2003). Moreover, the difference-making account shares with
the interventionist approach the ambition to evaluate counterfactuals with respect to
actual events rather than possible worlds. However, the term intervention conveys the
misleading impression that for the identification of causal relationships, observational
data cannot suffice, but that experimentation or manipulation is somehow required.
And indeed, according to Woodward, interventions have some peculiar ontological
properties, e.g., they require a distinct intervention variable and they are able to disrupt
other causal relationships. This puts a big question mark behind the appropriate-
ness of the interventionist approach for data-intensive science which is more often
than not dealing with data sets of observational nature. By contrast, eliminative
induction and the difference-making account work equally well for experimental
and observational data.21

In summary, an account of causation that is appropriate for data-intensive science
should fulfill a number of criteria of adequacy. (i) The account should fit the variational
nature of evidence used in data-intensive science, i.e., that one is usually dealing with
many instances in terms of different combinations of the high-dimensional predictor
variable and the response variable. (ii) The account should not require a strong notion
of intervention, since the data in data-intensive science is often of observational nature.
(iii) Finally, it should not rely on elaborate theoretical background assumptions, since
data-intensive science is usually taken to be relatively theory-free. The first requirement
poses problems for the regularity account. The second rules out any interventionist or
manipulationist accounts that deserve the name. And, the third requirement excludes
mechanistic or causal-process accounts, since data-intensive science often aims to
establish predictive inferences without any knowledge of underlying processes. By
contrast, the difference-making account fares quite well with respect to all three criteria.

4.2 Difference-Making in Big-Data Algorithms

We are now in a position to establish that the big-data algorithms introduced in Sect. 2b
rely on a logic of eliminative induction. Several aspects are important. First, data-
intensive methods generally employ evidence of variational nature as required by

20 Some preliminary ideas can be found in Pietsch (2014, Sec. 3f), while a lot of the details still have to be
worked out.
21 In a similar vein, Reutlinger (2012) criticizes the notion of intervention in Woodward’s approach and argues
for eliminating it.
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eliminative induction, i.e., they rely on a large number of different combinations of the
predictor and response variables. Also, the perspective of eliminative induction is
useful when examining the premises under which big-data algorithms lead to reliable
results. Finally, several data-intensive methods explicitly rely on difference-making to
single out crucial parameters.

In the case of classification trees, the algorithm determines those parameters that
contain the most information, i.e., make the largest difference with respect to classifi-
cation, measured in terms of the Shannon entropy. More exactly, the algorithm
proceeds as follows for a classification problem with respect to an outcome variable
A that can take on the values a1, …, an. In the training set these values shall
appear with relative frequencies p(a1), …, p(an). The Shannon entropy is then
calculated as H(A)=−∑ i p(ai) log2 p(ai). Notably, it has the property that it is
maximal, when all outcomes are equally likely, and minimal in the case of perfect
classification, i.e., if the probability of a single ax equals one, and the probabilities
for all other a’s are zero.

One can then introduce a classification taking into account a parameter CX with
possible values x1, …, xk. Again, the p(xj) and p(ai | xj) can be determined on the basis
of relative frequencies in the training set. Accordingly, a conditional Shannon entropy
can be calculated:

H A CXjð Þ ¼
X

j
p x j
� �

H A CX ¼ x j
��� � ¼ −

X
j
p x j
� �X

i
p ai x j

��� �
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Given the conditional entropy, the so-called information gain is defined as
H(A)−H(A|CX). It is always positive or zero and quantifies a possible improve-
ment of the classification A|CX with respect to just A. The information gain will
be the largest, namely H(A), for a perfect classification, i.e., a classification,
where all p(ai | xj) are either 1 or 0. On this basis, the CX can be determined
that exhibits the largest information gain of all C resulting in a number of
subtrees corresponding to the different possible values of the parameter CX. The
whole procedure is then repeated for every subtree and so on.

In the case of a perfect classification, the algorithm yields an expression of necessary
and sufficient conditions for each value ofA: e.g., iff (C1=y1 ∧C2=y2) ∨ (C1=y3 ∧C3=y4),
then A=a1. If the classification is not perfect, for some values ai, the conditional proba-
bilities given certain C will be ≠1 and ≠0.

Thus, if a full set of relevant conditions is among the parametersC and if there is enough
data in terms of variation of parameters to exclude accidental correlations, then the algorithm
will identify the actual INUS conditions—possibly with some redundancies, but redundant
variables can easily be identified and eliminated after the algorithm terminates. In the
example above, C1=y1, C2=y2, C1=y3, and C3=y4 are all INUS conditions for A=a1.
Certainly, these will not always be made explicit by an algorithm, especially if they turn out
highly complex involving a large number of variables. But, whenever the algorithm yields
fairly reliable predictions, the reason must be that it managed to at least approximate some
necessary and sufficient conditions for the phenomenon.

There are various ways, in which the evidence may not be ideal. For example, we
may lack information in terms of specific configurations or a causally relevant param-
eter may be missing from the variables C. Furthermore, it may be the case that some
parameters are only symptoms or proxies of the actual causally relevant variables,
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which may be unknown. A symptom here is understood as a condition that is causally
related to the actual cause but need not always co-occur with it. It could be a
consequence of the real cause that requires for its instantiation further conditions.
Now, if the probability of co-occurrence is large then the classification tree algorithm
will yield decent predictions on the basis of symptoms. Broadly speaking, the algorithm
can be understood as a heuristic generalization of eliminative induction for situations
that are less ideal than textbook examples.

With respect to the conceptual analysis of causation in the previous section, the
conditions identified by the classification tree algorithm are causes according to the
difference-making account in situations of ideal evidence and if the additional premises
mentioned toward the end of Sect. 4a are fulfilled.22 By contrast, these conditions are in
no obvious way causes in terms of Lewis’s counterfactual account as the algorithm
does not evaluate possible worlds or the similarity between instances, nor are they
causes in terms of interventions since there are no obvious intervening variables as
required according to Woodward’s definition of intervention.

Furthermore, the notion of regularity is not really helpful to understand the logic of
classification trees. Rather, it must again be emphasized that the algorithm relies chiefly
on evidence in terms of parameter variation while identical instances are often redun-
dant. For example, if there are three parameters C1, C2, and C3 with C2 being the actual
cause of A, the classification tree algorithm will be at a loss if the data comes as a mere
regularity of many instances in which both C2 and A are present, while not much is
known about C1 and C3. Rather, to identify the correct cause, it suffices to know one
instance for all possible combinations of C1, C2, C3. In summary, the analysis of the
classification tree algorithm in terms of causality is best carried out using the difference-
making account.

In a similar manner, the naïve Bayes algorithm can be interpreted in terms of
eliminative induction although the connection is a little less obvious. In the interest
of space, I will refrain from a detailed analysis. Let me just summarize that for a
Bayesian approach without the naïve independence assumption P(C1, …,
CN|A)=Πi=1,…,N P(Ci|A), it can be proven that a correct classification results in the
presence of sufficient conditions as well as in the absence of necessary conditions.
Other than the classification trees, the Bayesian approach will not explicitly identify
causal factors, but if they are present in terms of INUS conditions, a correct classifi-
cation of novel instances will result.

Complications arise again in situations of less-than-ideal evidence, for example, if
not all causally relevant factors are known or if only proxies of the actual factors are
available. But, in those cases, it will generally help to have abundant data in terms of
parameter variation. The independence assumption of the naïve Bayes approach

22 More exactly, the conditions, under which classification trees function successfully, are identified in Pietsch
(2015, Sect. 4): B(a) one has to know all parameters C that are potentially relevant for the phenomenon A in a
given context determined by the background B; (b) one has to assume that for all collected instances and
observations the relevant background conditions remain the same, i.e., a stable context B; (c) one has to have
good reasons to expect that the parameters C are formulated in stable causal categories that are adequate for a
specific research question; (d) there must be a sufficient number of instances to cover all potentially relevant
configurations of the phenomenon. If such theoretical knowledge can be established, then there is enough data
to avoid accidental correlations and to map the causal structure of the phenomenon without further internal
theoretical assumptions about the phenomenon.^
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strongly simplifies calculations but is not always compatible with an INUS perspective.
For example, if (C1∧C2)∨C3 is the complete cause for A, the independence assumption
will not hold, since e.g., in general P(C1∧C2∧¬C3|A)≠P(C1|A) P(C2|A) P(¬C3|A).

Again, eliminative induction provides a useful perspective also for the methodolog-
ical analysis of the naïve Bayes algorithm. Obviously, the algorithm relies on evidence
in terms of parameter variation as generally required by eliminative induction. The
quality of the results depends on the same premises that were pointed out in Sect. 4a, in
particular constancy of the background, appropriate causal language, and sufficient
number of instances.

Clearly, difference-makers C among the predictor variables will decisively influence
the classification as they correlate substantially with the phenomenon A, i.e., mostly
P(C|A)>>P(C|¬A)—even if a C is not sufficient, but only a necessary condition for A.
By contrast, if C is causally unrelated to A, then we can plausibly assume that A and C
are independent P(C|A)≈P(C|¬A)≈P(C). Thus, there is a good chance that the outcome
of the naïve Bayes algorithm is determined by the largest difference-makers or proxies
of them, and thus, a correct classification will result. These few remarks are intended to
underline that an analysis of the naïve Bayes algorithm in terms of a difference-making
approach can lead to a better understanding under which circumstances the algorithm
will actually be successful.

In contrast to classification trees, the naïve Bayes approach does not explicitly
identify the most relevant parameters. Therefore, it is often combined with a separate
procedure of feature selection. For this purpose, a large number of different approaches
exist, and many of them at least implicitly rely on difference-making (e.g., Guyon and
Elisseeff 2003). One important example is variable ranking, in which the predictor
variables are ranked according to a specific measure and then a threshold is introduced
up to which value of the measure the variables are taken into account. A typical
measure is Bmutual information^ which corresponds to the information gain discussed
before, i.e., at least in this case the ranking again relies on the amount of difference-
making by the various parameters.23

A further conceptual difficulty is that the difference-making account as presented in
the previous section constitutes prima facie a deterministic approach to causation. This
is particularly problematic since the evidence in data-intensive science only rarely
includes all relevant parameters such that phenomena are fully determined by their
conditions. One might conclude then that algorithms like naïve Bayes require a
probabilistic concept of causation. While it is impossible to fully address this complex
issue in the present article, I believe that the difference-making account can be
generalized to indeterministic contexts. The basic idea is to reformulate the examined
phenomenon on a coarse-grained level of description such that it becomes determinis-
tic. As a simple example, quantum mechanics is deterministic when considering the
evolution of the wave function according to the Schrödinger equation instead of
examining single collapse events. Note that this requires a further premise ensuring a
stable context: Variables which are not fully determined by conditions should be
identically and independently distributed as is, for example, the case for position and
momentum in quantum mechanics.

23 Recently, deep learning techniques have become an immensely popular and successful approach to feature
extraction.
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As a third example of a big-data algorithm, the non-parametric regression to be
discussed in Sect. 5c can also be interpreted in terms of eliminative induction. The
causal nature of the resulting curve can be justified in terms of the method of
concomitant variations which, in turn, derives its inferential power from the method
of difference (Pietsch 2014, Sec. 3d). If the required premises are fulfilled, in particular
stable context, stable categories, and sufficient number of instances, then non-
parametric regression just implements the method of difference to establish complex
functional relationships (Pietsch 2015).

In summary, while the algorithms of data-intensive science are less rigorous than
pure eliminative induction, at least some of them can be considered as heuristic variants
for less-than-ideal situations of evidence. They are optimized for computational feasi-
bility and stand a good chance to yield useful approximations of some causal story
behind a phenomenon. It largely remains a challenge for contemporary statistics to
work out the mathematical details, under which premises these methods are successful
and to what extent. In general, including more parameters C will increase the proba-
bility that the actual cause of A might be among them, while admittedly also increasing
the probability for accidental correlations, i.e., that conditions produce the correct
classification merely by chance. However, more data in terms of instances of different
configurations can reduce the probability for such accidental correlations. Thus, more
data in terms of parameters and instances will generally increase the probability that
correct causal relations are identified by big-data algorithms.

4.3 Big-Data Laws

Building on work by Nancy Cartwright (1999) among others, the philosopher of
biology Sandra Mitchell has recently outlined the enormous challenge posed by
complexity in many higher level sciences (2008). Questioning widespread reductionist
assumptions, she argues that causal relationships in such sciences show a number of
remarkable features. (i) They are complicated, in particular there are usually many
contributing factors instead of one dominating cause. Also, there may well be a number
of different possible causes for the same phenomenon. Consequently, causal relation-
ships are often strongly context-dependent. (ii) The causal dependencies are frequently
non-linear, mostly they do not follow any simple function at all. (iii) Causal interaction
takes place between different levels of ontology. (iv) The composition of causes does
not follow simple addition laws. Mitchell identifies a number of paradigmatic examples
mainly from her own field of expertise, the biomedical sciences, including depression
and various kinds of cancer.

Accordingly, Mitchell calls for a novel epistemology that is able to deal with
these and other aspects of causal complexity (2008, p. 22–23). In general, the
naïve regularity accounts that are still commonplace in the sciences will fail, since
due to strong contextuality, some laws may be instantiated only a small number of
times or even only once (cp. again Russo’s argument for a variational epistemol-
ogy, 2009). A certain type of depression or cancer may, for example, be very
specific to a particular individual.

By contrast, the algorithms discussed in the previous Sect. 4b are well-equipped to
address the mentioned aspects of complexity. Obviously, both classification trees and
naïve Bayes are able to identify or approximate causal relationships that depend on a
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large number of parameters, that react very sensitively to all kinds of changes in the
parameters, and that may sometimes be instantiated only a small number of times.
Relatedly, the composition of causes may be arbitrarily complex. All these complica-
tions are not particularly problematic for eliminative induction and a difference-making
account of causation as long as the problem is properly framed in terms of constancy of
background and an adequate causal language and as long as a sufficient number of
instances are known covering at least a considerable fraction of the relevant configu-
rations of the examined system.

Furthermore, eliminative induction and the discussed big-data algorithms are neutral
with respect to any supposed levels of ontology. There is no reason, why necessary and
sufficient conditions in terms of difference-making could not link different levels of
ontology, e.g. microscopic and macroscopic. In fact, the difference-making account
grounds a pluralistic and perspectival view on causation, where it is easily possible that
different causes are identified depending on the formulation of a problem. Finally, note
that both algorithms discussed so far rely on the presence or absence of certain
conditions and therefore cannot immediately account for functional dependencies.
However, we will see in Sect. 5c that data-intensive algorithms based on the logic of
eliminative induction are also able to deal with non-linearity and arbitrarily complex
functional dependence.24

The more complex and contextual the causal relationships are, the less plausible it
becomes that these relationships will adhere to the old reductionist ideal that the laws of
science can be integrated into a hierarchy of increasing universality. This constitutes
one of the major differences between the causal complexity discussed here and the
complexity traditionally invoked in physics, in particular in chaos theory (cp.
Kuhlmann 2011). The latter deduces complex phenomena from underlying simple
equations, like the logistic equation modeling population growth or the Lorenz equa-
tions in meteorology. However, the reduction of complex phenomena to simple laws is
only plausible if the relevant ontology can be reduced to a small number of different
types of entities, and if the causal structure can be reduced to a small number of laws,
which, in turn, requires that the composition of causes adheres to simple rules. There is
no reason apart from metaphysical prejudice why we should expect this to be the case
for all phenomena.

Before the advent of big data, the causal structure of complex phenomena was
extremely difficult to analyze as it was almost impossible to efficiently collect and
handle high-dimensional data. Mostly, scientists worked with dubious simplifications,
e.g., that all but a few main influences on a phenomenon could be neglected and that
these main influences adhered to simple functional relationships. But these assump-
tions, which are, for example, implicit in the structural equation modeling that is
ubiquitous in the social sciences, were chiefly motivated not by empirical consider-
ations but merely by the need to make the analysis fit the available scientific toolbox.
Certainly, generalized laws can always be formulated, but for the price that such laws
exhibit a large number of exceptions which renders them fairly useless beyond basic
heuristics. Data-intensive science seems much more suitable than these conventional
approaches as a methodology for the causally complex sciences.

24 Compare the preliminary discussion about functional dependence in Pietsch (2014, 3d).
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4.4 Data Threshold

As Halevy et al. point out, there exists for many phenomena a relatively sudden change
when data-driven approaches become effective (2009)—a transition point that could be
called a data threshold. They provide a plausible explanation for its existence: BFor
many tasks, once we have a billion or so examples, we essentially have a closed set that
represents (or at least approximates) what we need, without generative rules.^ (2009, 9)
This aspect further corroborates the methodological analysis of the previous sections.
The data threshold constitutes the point, at which the data covers a considerable fraction
of Ball configurations that are relevant with respect to a specific research question^ or to
a predictive task as required in Sect. 2a. The deeper justification for this premise was
given in Sect. 4a, namely that it enables to carry out eliminative induction in terms of
the method of difference and the strict method of agreement. As the example of
machine translation showed, the required number of instances may be huge when
dealing with complex phenomena. Beyond the data threshold, the equally large number
of resulting laws need not be integrated into a hierarchical structure to make predic-
tions. No abstract or general laws are necessary, which leads to the notion of horizontal
modeling to be described in the next section.

5 Horizontal Modeling

5.1 The Role of Causal Modeling in Science

In the following, I will first provide a brief sketch how the causal modeling in data-
intensive science fits into a general epistemology of scientific knowledge. I will then
discuss some characteristics of this type of modeling and finally present an example
from statistics. In the past, several authors have sketched a hierarchy in our knowledge
about the world that broadly consists in an observational and a theoretical level. For
example, many logical positivists endorsed the distinction. More recently, proponents
of the Stanford School, in particular Nancy Cartwright (1983), have argued that the real
distinction is not between theory and observation but between a phenomenological and
an abstract level in science—a viewpoint that can be traced back at least to Pierre
Duhem.25 While the difficulties of separating the supposedly directly observable from
the non-observable are notorious, a broad distinction between the phenomenological
and the abstract is more plausible. This does not mean that every statement can be
uniquely classified in these terms, but rather that the general distinction is useful to
account for scientific practice. It basically concerns the boundary between that part of
our knowledge that can be used for efficient interventions and reliable predictions and

25 BA physical theory […] is a system of mathematical propositions, deduced from a small number of
principles, which aim to represent as simply, as completely, and as exactly as possible a set of experimental
laws. […] These principles may be called ‘hypotheses’ in the etymological sense of the word for they are truly
the grounds on which the theory will be built; but they do not claim in any manner to state real relations among
the real properties of bodies. These hypotheses may then be formulated in an arbitrary way. […] The various
consequences […] drawn from the hypotheses may be translated into as many judgments bearing on the
physical properties of the bodies. […] These judgments are compared with the experimental laws which the
theory is intended to represent.^ (Duhem 1954, 19–20)
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other parts that primarily serve an adequate structuring of the knowledge, mainly in the
interest of what Ernst Mach once called intellectual economy.

Cartwright developed her account broadly in the context of the new experimentalism
of the Stanford School. At the phenomenological level, one mostly deals with exper-
imental laws and is interested in the phenomena in their full complexity. These laws are
of causal nature, since their main function is to ground reliable predictions and
interventions. Eliminative induction based on parameter variation constitutes the pri-
mary scientific practice to establish such experimental laws. Note that the notion of a
phenomenological or causal level should not be misunderstood in terms of some
ontologically fundamental level. Rather, depending on context, the causal level can
be macroscopic or microscopic, or it may even include both microconcepts and
macroconcepts.26 Consequently, it is somewhat of a simplification to speak of a single
phenomenological level. Several layers can be included as long as the relationships
between these layers are causal and can serve for manipulation and prediction.27

By contrast, the theoretical level deals with abstract laws that are universal and mainly
serve conceptual and explanatory purposes. One is not interested anymore in the full
complexity of the world but often in exemplars, i.e., paradigmatic phenomena. Also, these
general laws are not of a pronounced causal nature anymore for the following reasons.
First, the function of the theoretical level is not so much on the side of prediction and
manipulation as in case of the phenomenological level, but rather, it serves an adequate
structuring of knowledge. Also, the theoretical laws are usually not established experi-
mentally by parameter variation, but rather are developed from the phenomenological
level in a process of abstraction mostly according to pragmatic criteria like simplicity. It is
of course again a simplification to speak of a single theoretical level. Especially in physics,
there exists a hierarchy of increasingly general theoretical laws, at the top of which stand
the fundamental axioms that are often taken to be the core of physical theories.

The two-level approach allows for a compromise between realist and antirealist
intuitions.28 It explains the continuous and increasing empirical success of science by
referring to the causal level that remains relatively stable even during major scientific
upheavals. Rather, what changes during scientific revolutions is not the causal content
but the abstract framework, i.e., scientific revolutions concern mainly the theoretical
level. The two-level framework can thus account for both the predictive stability and
the explanatory instability of science in the course of its history. This already suggests a
relative independence of the phenomenological from the theoretical level.

That one can develop the causal level to some degree without making reference to a
theoretical level is of course a central tenet of the new experimentalism—more or less
expressed by Ian Hacking’s famous slogan that Bexperimentation has a life of its own^
(Hacking 1983, xiii). 29 Accordingly, there should be scientific practices that remain

26 Thus, the causal level can comprise different levels of ontology (cp. section 4c). One should keep the
distinction between these different notions of level in mind.
27 From the perspective of the difference-making account, nothing precludes the possibility that
macrovariables cause microvariables or vice versa as long as the various causal relations are consistent with
each other. A detailed defense of this point would go beyond the scope of the present article.
28 In analogy to John Worrall’s Bbest of both worlds^-argument for structural realism (1989).
29 More exactly, Ian Hacking does not explicitly identify experimental knowledge as causal and theoretical
knowledge as Bless^ causal. This element is introduced by Cartwright, who is generally counted as a
proponent of the new experimentalism as well. Hacking cites Cartwright’s approach approvingly and points
out the close similarity of their respective antitheoretical stances (1983, Ch. 0).
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largely on the phenomenological and causal level. An example in this regard concerns
exploratory as opposed to theory-driven experimentation (Burian 1997; Steinle 1997,
2005; cf. also Pietsch 2014). The former consists basically in systematic parameter
variation, and the link to causation can again be established by means of eliminative
induction. There is little doubt that exploratory experimentation is a crucial practice in
particular in the early stages of the scientific examination of experimentally accessible
phenomena. Interesting case studies have been developed in particular by Steinle (2005).

Now, data-intensive science is another scientific practice that is mostly restricted to
the phenomenological level. As described in Pietsch (2015, sec. 6), there are a lot of
similarities between this type of research and exploratory experimentation, in particular
the restriction to a causal level that is accessed via a methodology of eliminative
induction based on parameter variation. There are also some key differences, maybe
most importantly that exploratory experimentation is—of course—an experimental
practice, while the data in data-intensive science is usually of observational nature.
But, from the perspective of the difference-making account of causation as sketched in
Sect. 4, this does not constitute a methodological obstacle since this approach works
equally well for observational and experimental data, in contrast to accounts that put
more emphasis on the ontological importance of interventions or manipulations for
causation. A related difference is that data-intensive science often deals with phenom-
ena that are much more complex than those accessible to exploratory experimentation.

As a consequence, the two practices, very broadly speaking, dominate different
domains. While exploratory experimentation is especially useful in sciences with a
relatively simple fundamental ontology and a pronounced hierarchy of theoretical
levels, such as physics, data-intensive science is often employed in complex sciences
that do not allow for significant levels of generalized theoretical laws. Of course, this is
not to deny that there are examples of exploratory experimentation in the complex
sciences or that data-intensive science has applications in physics. To the contrary, there
are important data-intensive practices, for example, in particle physics or astrophysics,
even though some of these may not fall fully under the definition given in Sect. 2a,
mainly due to the considerable theory-ladenness of these practices.

An important question concerns the scope of this epistemological picture. When
Cartwright developed her views, she was chiefly inspired by physics which was her
main research focus at the time. Duhem, of course, also wanted to provide an
epistemology for physics. By contrast, most success stories of data-intensive science
come from other areas, for example, biology or the social sciences. Thus, it is an
important question whether the two-level framework sketched above applies to those
areas as well. My position on this issue is that all sciences have a more or less well-
developed phenomenological or causal level, as long as part of their epistemological
enterprise is to derive predictions based on a practice of difference-making that can
range from simple experiments in a laboratory to more sophisticated practices like
randomized control trials or quasi-experiments.

It is sometimes argued that the causes in complex sciences like the social sciences
are of a different nature compared with physics. While in the latter, one supposedly
deals with causal regularities, in the former, these may often fail to exist. However,
eliminative induction building on counterfactuals can identify causal structure without
relying on causal regularities, while these can subsequently be derived under the
premise that the relevant conditions reoccur. Thus, an absence of strict regularities
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does not imply the absence of causal structure according to the difference-making
account of causation.

The differences between the sciences are more pronounced with respect to the
theoretical level. For some fields, the development of an elaborate theoretical structure
is an important aim, the prime example being again physics, where one finds a complex
hierarchy of theoretical concepts of increasing generality that is built on top of the
phenomenological relations. Certainly, physics draws its impressive explanatory power
from the unificatory virtues of this hierarchical superstructure. In other sciences, past
attempts to build a similar theoretical structure have largely failed. A case in point are
the social sciences, in which nineteenth century dreams of a social physics based on a
small number of axioms never materialized. Social knowledge apparently resembles
rather a patchwork of more or less isolated areas of interrelated causal laws.

Of course, the main reason why there are these differences with respect to the
theoretical level has to do with the complexity of the respective phenomena. Physics
has the advantage that its ontology can be reduced to a small number of basic entities,
and the history of physics suggests that it is also possible to formulate a small number
of fundamental laws for those entities that can then be aggregated in straightforward
ways to account for composite physical phenomena of restricted complexity. Of course,
there are no a priori reasons why this should be the case for other fields as well. In
sciences that do not fulfill the mentioned requirements concerning ontology and laws, it
is implausible that a pronounced hierarchical structure can be developed.

The epistemological framework presented in this section motivates the distinction
between horizontal and hierarchical modeling that will now be elaborated. Again,
horizontal modeling remains on the causal and phenomenological level while hierar-
chical modeling is primarily concerned with building a theoretical superstructure.30

5.2 Characteristics of Horizontal Modeling

If data-intensive science is largely constrained to the phenomenological level, then this
suggests a fairly theory-independent scientific practice. This may be the true core of the
widely exaggerated claims concerning an alleged Bend of theory^ (Anderson 2008).
Again, the modeling of data-intensive science is particularly suited for the causal
analysis of complex phenomena in areas that lack a pronounced theoretical level—
when large amounts of data have to be taken into account, with which human memory
and computational capacities cannot deal anymore. The success of data-intensive
science in dealing with causal complexity is possible due to the automation of the entire
scientific process from data collection to data processing and model building to making
novel predictions—which was identified as a central feature in Sect. 2a. This automation
allows that the epistemic conditions for data-intensive science can differ substantially
from those under which the human cognitive apparatus models phenomena, 31 in
particular in terms of perceptive faculties, storage capacity, and computational power.

30 This terminology does not correspond to the way statisticians speak of hierarchical modeling in terms of
individual and aggregate variables, for example, individuals, firms, markets (e.g., Russo 2009, 315). As
already mentioned, the causal level can easily include variables from all of these Bontological^ levels.
31 A similar argument is given by Humphreys 2004 in the first chapter on Bepistemic enhancers.^
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Most importantly, while humans have to be very efficient in determining which data
to keep and which to forget or not even perceive in the first place, computers can often
store and handle all the data they are collecting. Consequently, conventional scientific
modeling is geared at an efficient data reduction and an adequate structuring of
knowledge resulting in a hierarchy of laws of increasing generality. By contrast, data-
intensive modeling has a different nature due to the ability to quickly access and handle
enormous amounts of data. The hierarchical structuring becomes largely dispensable
for prediction and manipulation, hence the term horizontal modeling for the big-data
approach. Distinctive features of such modeling are the following, which in principle
are all implied by the characterization of horizontal modeling as causal modeling for
complex phenomena. The characteristics are well illustrated by the example of data-
driven machine translation32 from Sect. 3a:

(i) Predictions in horizontal modeling are made rather directly from the data without
taking recourse to substantial modeling assumptions about the causal structure of
a phenomenon (Pietsch 2015), often just by looking up instances in the data that
are sufficiently similar to the instance that is to be predicted. Thus, the causal
relationships can be very complex and highly context-specific, often involving a
large number of parameters. Consequently, the number of laws will usually dwarf
that in traditional scientific modeling, as well illustrated by the example of
machine translation, which relies on many thousands of empirical relationships.

(ii) Since the data already represents (a significant fraction of) all relevant configura-
tions of the phenomenon, there is little need to introduce abstract levels of
description. Data-intensive models thus largely lack the hierarchical, nested
structure that is characteristic of most traditional science. Again, this is well
illustrated by the example of statistical machine translation which apparently
functions largely without modeling the grammatical structure of a language.

(iii) Relatedly, the explanatory power of horizontal models is much smaller than that of
hierarchical models. After all, models become more explanatory according to
many accounts of scientific explanation the more pronounced the hierarchical
structure is with each new level of laws or rules constituting a new level of
explanation. Consequently, the horizontal models provide little understanding,33

e.g., the understanding of a language is poor without knowledge of the grammat-
ical structure. This aspect lies behind widespread claims that data-intensive
science can account only for the fact that something is happening but not for
why it is happening. I will briefly elaborate on this in Sect. 5d.

(iv) Idealizations and simplifications play only a minor role in horizontal modeling
compared with the hierarchical approach, since these are usually introduced to link
different levels of generality. Certainly, there are modeling assumptions also in the
horizontal approach, for example, concerning the choice which data to collect and
how to analyze it. But, in the horizontal approach, there is no need to formulate
general rules that hold only approximately and have considerable exceptions.

32 One should stress again that translation rules are of course not causal relationships. As we had discussed in
Sect. 3a, eliminative induction works just as well for the Bconventional necessity^ of rules as for the Bempirical
necessity^ of laws.
33 The term Bunderstanding^ is used from now on in the sense of the theoretical explanation described in
Sect. 5d.
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Note further that data is handled in specific ways in data-intensive science. Mostly,
few restrictions are imposed on the extent and kind of data that is gathered and analyzed
(Bmessy data^). Also, there are often only a few very general modeling assumptions
guiding the formulation and analysis of the data (Bunstructured data^). Finally, few data
is discarded in the modeling process compared to conventional data modeling. These
features are linked with some remarkable developments in statistics to which we will
turn now.

5.3 Science Without Equations: Novel Paradigms in Statistics

Much of statistics in the twentieth century was model-driven relying to considerable
extent on the existence of some levels of generalized theoretical laws. This holds in
particular for the hypothesis testing of classical statistics, which has been the dominant
paradigm for much of the twentieth century. By contrast, the horizontal modeling that
was described in the previous sections is strongly inductive and largely data-driven.
From this follows a challenge for contemporary statistics to develop methods that are
suited for the novel data-rich contexts lacking substantial theoretical background
knowledge. This need for novel methodology is increasingly recognized in the statistics
community. For example, in a 2010 piece in Amstat News, the magazine of the
American Statistical Association, Mark van der Laan and Sherri Rose argue under
the heading BStatistics ready for a revolution^ that the Bnext generation of statisticians
must build tools for massive data sets^.34 By now, major research initiatives on the
topic have formed in various countries.

In a classic paper entitled BStatistical Modeling: The Two Cultures,^ the renowned
statistician Leo Breiman describes exactly this shift from statistics as a model-driven
enterprise, a practice that he calls data modeling, to statistics as an inductive, data-
driven enterprise, to which he refers as algorithmic modeling (2001). In the former,
statisticians build a model from the data, where typical models involve predictor
variables, random noise, and model parameters, which are all mapped by a given
function on the response variables. The model structure has to be motivated from a
more comprehensive theoretical context, and the models are either accepted or rejected
largely on the basis of goodness-of-fit tests. By contrast, the second type of modeling
does not assume a simplifying model to exist, but rather works directly with the entire
data to make predictions. The data mechanism is treated as a black box, as either
unknown or unknowable. Thus, there are no models to be evaluated on a yes-or-no
basis, algorithmic modeling is evaluated purely in terms of predictive accuracy
(Breiman 2001, 199).

With respect to the discussion in the previous section, the data modeling culture
assumes that there exists a meaningful theoretical level, from which the data can be
understood, and thus engages in hierarchical modeling, while the algorithmic modeling
culture is very much concerned with developing statistical tools for horizontal model-
ing. Breiman estimates that at the time of writing, only 2 % of the statistics community
was concerned with algorithmic modeling with major input coming from other fields in
particular of course from machine learning. He lists classification trees and neural nets
as primary examples for the algorithmic approach, and regression analyses with a

34 http://magazine.amstat.org/blog/2010/09/01/statrevolution/ accessed 31.1.2015.
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specified functional form such as logistic or linear regression as examples for data
modeling (Breiman 2001, 199).

It would be wrong to think of the emergence of an inductive, data-driven paradigm
in statistics as a sudden phenomenon. Breiman describes how he developed his view on
algorithmic modeling when he worked as a consultant outside of academia in the 1960s
and 1970s. A period of major progress in algorithmic modeling then begins around the
mid-1980s. One does not have to be a historian to observe that these theoretical
developments parallel enormous advances in information technology around the same
time period.35 Many core ideas of algorithmic modeling have in fact been known for
many centuries, e.g., the concept of classification trees or simple non-parametric
regression methods like connect the dots. However, they have gained significant
scientific importance only due to the emergence of powerful information technology
for acquisition, storage, and processing of large data sets. This, in turn, has led to
further theoretical analysis regarding the reliability and limits of the various algorithmic
approaches as well as to the development of novel statistical tools. In recent times, from
the mid-1990s onwards, it was in particular the increasing interconnectedness of
information technology, in particular in the internet, that has led to the emergence of
very large high-dimensional data sets, for example, in the social domain. In a way, the
recent hype concerning big data is the culmination of a development that has started
much earlier.

Since these shifts concern methodology and not theoretical or empirical
content, they differ in important ways from scientific revolutions. Most impor-
tantly, the emergence of novel methodologies does not imply the abandonment
of older ones. Nevertheless, the statistics community currently experiences some
of the social ramifications and Bculture clashes^ that are typical for scientific
paradigm shifts as documented, for example, in Breiman (2001) or in Peter
Norvig’s dispute with Noam Chomsky on data-driven machine translation
(Norvig 2011).

There are by now several well-established fields of algorithmic modeling, for
example, neural nets or classification trees, while other important developments may
still lie ahead. I will in the following focus on a specific example that very well
illustrates the distinction between data and algorithmic modeling, namely the shift from
parametric to non-parametricmodeling.36 The latter is by now an established approach
in statistics, but its ever-increasing significance for applications is mostly owed to
advances in information technologies. Goeran Kauermann explicitly makes the
link: BStatistics and econometrics have been dominated by linear and parametric
models over decades. A major reason for this was the numerical possibilities
which simply forbid to fit highly structured models with functional and dynam-
ic components.^ (2006, 137)

The distinction between non-parametric and parametric refers to the number and
nature of assumptions in the respective models. Unlike parametric models, non-

35 For a graphic illustration of this claim, compare the terms ‘computer’ and ‘non-parametric’ on Google’s
Ngram Viewer https://books.google.com/ngrams.
36 Hastie and Tibshirani (1990) is a milestone; a useful overview can be found in Kauermann 2006; from a
philosophical perspective, Sprenger 2011 discusses an interesting example of non-parametric modeling,
bootstrap resampling and argues for its epistemic significance.
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parametric models cannot be characterized by a bounded set of model parameters.37

Non-parametric models thus allow for a wide range of functional dependencies be-
tween input and output variables, while in parametric modeling, the functional form is
usually predetermined by a finite set of parameters, e.g., the mean μ and the standard
deviation σ in case of a Gaussian distribution.

Let me illustrate the changes by means of two examples: first the comparison
between parametric and non-parametric regression and second between parametric
and non-parametric density estimation. Afterwards, I will discuss the findings in light
of the discussion regarding causal modeling and in particular the distinction of hori-
zontal vs. hierarchical modeling.

In a parametric univariate linear regression problem, one has reasonable
grounds to suspect that a number of given data points (xi;yi) can be summarized
in terms of a linear dependency: y=ax+b. Thus, two parameters need to be
determined, offset b and slope a, which are usually chosen such that the sum of
the squared deviations ∑ i = 1

n (yi− (axi+b))2 is minimized.
In non-parametric regression, the data is not summarized in terms of a small

number of parameters a and b, but rather, all data is kept and used for predictions
(Russell and Norvig 2009, Ch. 18.8.4). A simple non-parametric procedure is
connect-the-dots. Somewhat more sophisticated is locally weighted regression, in
which a regression problem has to be solved for every query point xq. The yq value
is determined as yq=aqxq+bq with the two parameters fixed by minimizing
∑ i = 1

n K (d (xq,xi))(yi− (aqxi+bq))2. Here, K denotes a so-called kernel function that
specifies the weight of the different xi depending on the distance to the query point
xq in terms of a distance function d(). Of course, an xi should be given more
weight the closer it is to the query point.

The generalization to higher dimensions is straightforward though for next-neighbor
methods, an important issue arises that has been termed the Bcurse of dimensionality^
(Bellman 1961). With an increasing number of dimensions, i.e., of predictor variables,
the average distance between neighboring points rapidly becomes very large of order
(1/N)1/n, where N is the total number of points and n the number of dimensions.
Consequently, the data points will almost always be sparsely distributed in many
dimensions.38

Let us briefly reflect how these regression methods illustrate differences between
parametric and non-parametric modeling. While in the example of parametric regres-
sion, linear dependency is presupposed as a modeling assumption, the non-parametric
method can adapt to arbitrary dependencies. In parametric regression, the nature of the
functional relationship has to be independently justified by reference to a theoretical
context, which prevents an automation of the modeling process. Certainly, non-
parametric regression also makes modeling assumptions, e.g., a suitable kernel function
must be chosen that avoids both overfitting and underfitting. However, within reason-
able bounds, the kernel function can be chosen by comparing the predictions of the

37 Here, parameters are to be understood not in terms of variables but of constant values determining the
properties of a specific model: e.g., in the model y=ax+b below, a and b are model parameters.
38 Note that this curse of dimensionality does not automatically apply to all big-data algorithms. To the
contrary, it occasionally turns out helpful to artificially increase the dimensionality of the variable space in
methods like decision trees or support vector machines (Breiman 2001, 208–209). Also, if additivity is
assumed between the different influences, the curse loses its spell (Kauermann 2006, 144).
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algorithm with the values in a test set. Since often, predictions turn out relatively stable
with respect to different choices of kernel functions, an automation of non-parametric
modeling remains feasible.

While non-parametric regression is more flexible than parametric regression, it is
also much more data-intensive and requires more calculation power. Notably, in the
parametric case, a regression problem must be solved only once. Then, all predictions
can be calculated from the resulting parametric model. In the non-parametric case, a
regression problem must be solved for every query point. In principle, each prediction
takes recourse to all the data. While the parametric model consists in a relatively simple
mathematical equation, the non-parametric model consists in all the data and an
algorithmic procedure for making predictions. Note that the predictive reliability of
non-parametric regression can again be evaluated in terms of eliminative induction and
a difference-making account of causation. In fact, non-parametric regression just
implements Mill’s method of concomitant variation, which, in turn, essentially relies
on the method of difference. Thus, the same premises already given in footnote 22 need
to be fulfilled (Pietsch 2015, Sect. 5).

Consider density estimation as a second example (Russell and Norvig 2009,
Ch. 20.2.6). The parametric approach makes an explicit assumption about the nature
of the distribution function, for example, a Gaussian distribution f xð Þ ¼ 1

σ
ffiffiffiffi
2π

p e−
x−μð Þ2
2σ2 .

This distribution is determined by two parameters, the mean μ and the standard
deviation σ, which are chosen such that a best fit with the data is achieved.

A simple non-parametric approach is the histogram method, where the parameter
space is partitioned into cells of equal volumeΔVand the number ki of all N data points
is counted for each cell i. The density is given by f(x)=ki /NΔV, where ki is the number
of data points in the same cell as the query point x. A closely related often more
effective non-parametric method is k-nearest neighbors, where the same formula is used
but k is now fixed and one determines the minimal volume ΔV surrounding the query
point x such that k points are included. The parameter k should be chosen in a way to
avoid overfitting but still be sufficiently sensitive. A suitable k can be fixed by
comparing the values in a test set with the predictions by the trained model allowing
for straightforward automation of the non-parametric approach.

Again, in the parametric case, the data is summarized in terms of a model charac-
terized by a few parameters μ and σ resulting in a simple formula, while the non-
parametric method makes no assumptions about the nature of the distribution function
and is thus much more flexible. On the other hand, the non-parametric method is very
data-intensive since it uses the original data points to make predictions. The difference
between the two types of models is striking: While parametric models usually are more
or less simple equations, the non-parametric models consist in the original data plus an
algorithm to derive predictions from the data. Since there is no bounded set of
parameters in the latter, the non-parametric models cannot be framed in terms of
general equations at all.

From such examples, a list of features can be drawn that distinguish parametric from
non-parametric modeling. These are intricately connected with the characteristics of
horizontal modeling of causal structure as described in Sect. 5b: (i) Parametric methods
usually presuppose considerable modeling assumptions that must be based on back-
ground theory. In particular, they summarize the data in terms of a Bsmall^ number of
model parameters specifying, for example, a Gaussian distribution or linear
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dependence, hence the name. By contrast, non-parametric modeling presupposes few
and weaker modeling assumptions, e.g., allows for a wide range of functional depen-
dencies or of distribution functions. Certainly, some parameters also occur in non-
parametric modeling, e.g., the number of neighbors taken into account in the k-nearest
neighbor algorithm. (ii) In non-parametric modeling, predictions are calculated on the
basis of the original data. There is no detour over a parametric model that summarizes
the data in terms of a few parameters. 39 (iii) While this renders non-parametric
modeling quite flexible with the ability to quickly react to unexpected data, it also
becomes extremely data- and calculation-intensive. This aspect accounts for the fact
that non-parametric modeling is a relatively recent phenomenon in scientific method.

Non-parametric models allow for novel ways to deal with complexity: (iv) A crucial
shift occurs from equation modeling to algorithmic modeling. Conventional parametric
modeling in terms of equations, describing, for example, functional dependencies or
distribution functions, already presupposes that the picture has been reduced to a (usually
small) number of parameters as well as to (often relatively simple) functional relation-
ships. By contrast, non-parametric modeling does not have such restrictions. It relies less
on sophisticated mathematics and more on a brute-force execution of a large number of
steps, when, for example, an algorithm searches a large database for similar cases. Since
the set of parameters is by definition unbounded, non-parametric models cannot be
expressed in terms of general equations. Consequently, the question arises how to
represent them on a fundamental level. A basic suggestion in this regard would be that
the algorithm together with the data take over the role of the equations, resulting in the
often unbounded number of phenomenological laws characteristic for horizontal model-
ing. Thus, non-parametric models consist of the original data and an algorithmic
procedure to derive predictions from the data.

(v) The complexity of non-parametric models prevents a deeper understanding of the
phenomena. Thus, there is a shift in epistemic values regarding the aims of modeling.
Non-parametric modeling is geared almost exclusively at prediction and manipulation
and rarely at understanding in terms of general laws or rules (cp. characteristic iii in
Sect. 5b). By contrast, parametric modeling usually emphasizes understanding. While
parametric modeling often correlates with a realist and reductionist viewpoint, non-
parametric modeling has instrumentalist and pluralist connotations. The instrumentalist
attitude is, for example, apparent in the widespread use of ensemble methods in data-
intensive science that combine different models even if these start from mutually
contradictory assumptions. Presumably, this shift in epistemic values is at the root of
the mentioned divide between Breiman’s different Bcultures^ of statistical modeling.

In summary, the increasing availability of data leads to the emergence of novel
paradigms in statistics that are well suited for the data-driven, strongly inductive
approach of data-intensive science aiming to analyze phenomena with a complex
causal structure.

5.4 Outlook: Big Data’s Alleged Lack of Explanatory Power

There is one further issue that merits a detailed treatment in a separate article, but that I
want to briefly address because it is intimately connected with the shift from

39 Both (i) and (ii) are of course closely related to the first characteristic stated in Sect. 5b.
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hierarchical to horizontal modeling. It concerns the question in which ways data-
intensive science can be explanatory. The idea that with big data and with the alleged
shift from causation to correlation science ceases to be explanatory plays a considerable
role in popular as well as academic accounts. A representative example is the following
quote: BThe correlations [found in big-data science] may not tell us precisely why
something is happening, but they alert us that it is happening.^ (Mayer-Schönberger
and Cukier 2013, 21) In combination with the claim that correlations often are enough
and that the notion of causation loses its significance in data-intensive science, this
would imply a scientific practice that ceases to be explanatory.

Again, the conceptual details are rather sophisticated. To understand how data-
intensive modeling can be causal but fail to exhibit certain explanatory virtues of
conventional science, various notions of explanation have to be carefully distinguished
as discussed in the extensive philosophy-of-science literature on this issue.40 As with
many methodological theses on big data, the original claims by data evangelists are rather
exaggerated, while the rejoinders by those defending the traditional ways of science often
fail to do justice to the interesting epistemic shifts that are happening. Consider again the
example of machine translation from Sect. 3a. Obviously, the statistical approach lacks a
lot of the explanatory virtues of the rule-based approach. For example, in the latter, one
can explain the position of words in a sentence by referring to grammatical rules for the
sentence structure or explain the ending of verbs by means of conjugation rules, the
ending of substantives by means of declination rules, etc.

In a purely statistical approach, all these explanatory virtues cease to exist—mainly
because there is no hierarchical structure of increasingly general rules. Essentially, the
only type of explanation that remains in the data-driven approach is explanation by
similarity. A certain translation can be explained by referring to sufficiently similar
instances of successful translation. Certainly, such an explanation does not provide
as much intellectual satisfaction as explanations referring to grammatical rules,
but it is explanatory in the rudimentary sense that it points to relevant evidence
which justifies the translation—thereby answering the question why it was used
in a certain context.

A good starting point for discussing the alleged lack of explanatory virtue in data-
intensive science is the following distinction41: (i) to explain by giving an argument that
derives what is to be explained from a number of general laws or rules thereby relating
a phenomenon to other phenomena and achieving unification. Such explanations can
be formulated, for example, in the rule-based modeling of languages; (ii) to explain by
citing the causal factors that can account for a certain event, where these factors are
difference-makers and can be identified by eliminative induction. With respect to the
example of data-driven machine translation, one might explain a successful translation
of a certain word by pointing to relevant word sequences in the vicinity of the word.42

In the first category of explanation, general laws are explanatory, explanations have the
structure of arguments, and they mostly aim at unification. In the second category,

40 An excellent introduction is Psillos (2002).
41 A similar distinction is drawn in Gijsbers (2013). His terminology is quite useful for the present analysis,
with some minor disagreements between our perspectives, the discussion of which would lead too far astray
and has to be postponed to a more in-depth treatment of explanation in data-intensive science.
42 Note that some overlap can exist between both kinds of explanation, in particular if the causal laws are
sufficiently general.
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causal factors are explanatory and explanations consist in lists of factors. Since data-
intensive science is about causal modeling in terms of eliminative induction but fails to
produce a hierarchical structure, data-intensive models mostly yield explanation in the
second sense but largely fail to be explanatory in the first sense.

The distinction fits well with the epistemological framework sketched in Sect. 4a. In
fact, Nancy Cartwright introduces a similar dichotomy: BThere are two quite different
things we do when we explain a phenomenon in physics. First, we describe its causes.
Second, we fit the phenomenon in a theoretical frame^ (1983, 16). The former stays at
the causal level and thus fits well with horizontal modeling, the latter refers to
theoretical structure and thus depends on hierarchical modeling.

Note that complex phenomena in the high-level sciences, e.g., the social sciences or
medicine, may not be accessible to explanation (i) at all, if laws of significant generality
fail to exist. Consequently, human understanding of these phenomena in terms of
theoretical explanations may always be considerably impaired while reliable predic-
tions and manipulations may still be possible using data-driven approaches. This may
in the future force us to reconsider the role of human experts in the complex sciences
that have been traditionally conceived to guide the research process by providing
understanding. Data-intensive science often functions without much of a theoretical
level, as some of the pertinent examples show: machine translation without knowledge
of grammar, advertising without classical advertising knowledge, or campaigning
without in-depth political-science knowledge.

6 Conclusion: the New Science of Complexity

The horizontal modeling based on algorithmic procedures and novel data-driven
statistical approaches will in the coming years greatly extend the causal knowledge
in the complex sciences. Opportunities lie, for example, in medicine and epidemiology
when dealing with complex diseases like allergies, asthma, and cancer or in ecology
when trying to understand complex processes like the recent worldwide decline in bee
populations. Presumably, more effective ways of management will become possible
through big data in both economics and politics. However, there are also considerable
dangers concerning potential abuse especially in the social sciences, where most of the
large data sets are currently collected.

The knowledge established by data-intensive methods will consist in a large
number of causal relationships that generally involve numerous predictor vari-
ables and that are highly context-specific. The complexity of these laws and the
lack of a hierarchy into which they could be integrated prevent a deeper
understanding, while allowing for predictions and interventions. Almost certain-
ly, we will experience the rise of entire sciences that cannot leave the com-
puters and do not fit into conventional textbooks.
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